MOSFET基本概述

MOSFET的分类


(资料图片)

MOSFET的种类:按导电沟道类型可分为P沟道和N沟道。按栅极电压幅值可分为:耗尽型-当栅极电压为零时漏源极之间就存在导电沟道;增强型-对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET主要是N沟道增强型。

MOS管结构原理图解

(以N沟道增强型为例)

N沟道增强型MOS管结构如图5所示。它以一块低掺杂的P型硅片为衬底,利用扩散工艺制作两个高掺杂的N+区,并引入两个电极分别为源极S(Source)和漏极D(Drain),半导体上制作一层SiO2绝缘层,再在SiO2上面制作一层金属铝Al,引出电极,作为栅极G(Gate)。通常将衬底与源极接在一起使用。这样,栅极和衬底各相当于一个极板,中间是绝缘层,形成电容。当栅-源电压变化时,将改变衬底靠近绝缘层处感应电荷的多少,从而控制漏极电流的大小。

MOS管工作原理详解

(N沟道增强型为例)

当栅-源之间不加电压时即VGS=0时,源漏之间是两只背向的PN结。不管VDS极性如何,其中总有一个PN结反偏,所以不存在导电沟道。

当UDS=0且UGS>0时,由于SiO2的存在,栅极电流为零。但是栅极金属层将聚集正电荷.它们排斥P型衬底靠近 SiO2一侧的空穴,使之剩下不能移动的负离子区,形成耗尽层,如图6所示

当UGS增大时,一方面耗尽层增宽,另一方面将衬底的自由电子吸引到耗尽层与绝缘层之间,形成一个N型薄层,称为反型层,如图7所示。这个反型层就构成了漏-源之间的导电沟道。使沟道刚刚形成的栅-源电压称为开启电压UGS(th)/VT。UGS电压越大,形成的反层型越厚,导电沟道电阻越小。

当VGS>VT且VDS较小时,基本MOS结构的示意图如图8-1所示。图中反型沟道层的厚度定性地表明了相对电荷密度,这时的相对电荷密度在沟道长度方向上为一常数。相应的ID-VDS特性曲线如图8-1所示。

当VGS>VT且VDS增大时,由于漏电压增大,漏端附近的氧化层压降减小,这意味着漏端附近的反型层电荷密度也将减小。漏端的沟道电导减小,从而ID-VDS特性曲线的斜率减小,如图8-2所示。

当VGS>VT且VDS增大到漏端的氧化层压降等于VT时,漏极处的反型层电荷密度为零,此时漏极处的电导为零,这意味着ID-VDS的特性曲线的斜率为零,称为预夹断,如图8-3所示。

当VGS>VT且VDS>VDS(sat)时,沟道中反型电荷为零的点移向源端。如果UDS继续增大,夹断区随之延长,如图所示,而且UDS的增大部分几乎全部用于克服夹断区对漏极电流的阻力,漏电流ID为一常数,这种情形在ID-VDS对应于饱和区(恒流区),如图8-4所示。

MOSFET的特性曲线

© 滤波器 微信公众号

推荐内容